a2 United States Patent

Sachs et al.

US009069373B2

US 9,069,373 B2
Jun. 30, 2015

(10) Patent No.:
(45) Date of Patent:

(54) GENERATING A RUNTIME FRAMEWORK (56) References Cited
(75) Inventors: Nadine Sachs, Wiesloch (DE); Dirk U.S. PATENT DOCUMENTS
Baumgaertel, Hockenheim (DE); Ulrich
Bestfleisch, Schwetzingen (DE); Gerrit O oasTL BlL 72003 Lampsonelal ... S
%ﬂ;’_’;,g:f’ﬁ':?&iﬁiﬁ’%gé)}) E); 8775473 B2* 72014 Anzaloneetal. 707/791
A ’ , ’ 2004/0122844 Al* 6/2004 Malloyetal. 707/102
Sebastian Schroetel, Heidelberg (DE) 2004/0139061 Al* 7/2004 Colossi etal. ..o 707/3
. 2007/0250524 AL* 10/2007 L wecoovemrvrmmmrrereerrrrronnn 707/102
(73) Assignee: SAP SE, Walldorf (DE) ¥ cited by examiner
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 Primary Examiner — Timothy A Mudrick
U.S.C. 154(b) by 742 days.
(21) Appl. No.: 13/335,939 7 ABSTRACT
In an embodiment, the runtime framework is responsible for
(22) Filed: Dec. 23, 2011 executing multidimensional analytical metadata in a runtime
environment that is determined by the runtime framework. To
(65) Prior Publication Data generate such a runtime framework, the received multidimen-
US 2013/0166892 A1l Jun. 27, 2013 sional analytical metadata is analyzed to determine a type of
an associated calculation pattern. Based upon the type, sub-
(51) Int.Cl. sets of the multidimensional analytical metadata and corre-
GO6F 3/00 (2006.01) sponding runtime decision rules are determined. To execute
GO6F 9/44 (2006.01) the subsets, executable conditions corresponding to the mul-
GO6F 9/46 (2006.01) tidimensional analytical metadata are identified. Based upon
GO6F 13/00 (2006.01) the executable conditions, the calculation pattern associated
GO6F 9/00 (2006.01) with the multidimensional analytical metadata is executed by
GO6F 17/30 (2006.01) executing the associated subsets, and the runtime framework
(52) US.CL is generated. The runtime framework determines calculation
CPC ... GOGF 9/00 (2013.01); GOGF 17/30592 scenario executable subsets and calculation scenario inex-
(2013.01) ecutable subsets that are associated with the multidimen-
(58) Field of Classification Search sional a.lnalytic.al metadata, and executes the subsets in their
CPC oo, GOGF 9/00; GOGF 17/30502 ~ respective engines.
USPC ittt 719/320

See application file for complete search history.

START

17 Claims, 5 Drawing Sheets

ANALYZE UNION
OR JOIN MDAV
METADATA

OR JOIN
BASIC EXCUJ:';BLE
EXECUTABLE AS
cs? YES
225
RECURSIVE
ANALYSIS
230
SUBSETS
EXECUTABLE
AS C8?
YES
250 ~ Pt 235

EXECUTE IN EXECUTE IN
APPLICATION CALCULATION
SERVER ENGINE

US 9,069,373 B2

Sheet 1 of 5

Jun. 30, 2015

U.S. Patent

l "Old

001

SP1 3Svdav.Lvd AHONIN-NI

0cl LINN
JNILNNY AYAN
A3aNIdNOD

SR

GZl LINN
JNILNNYE AVAN
ANNOdNOD

gel
d344n4d
JNILNNY
V1vAavidn
— AVAN
0cl
LINN ANILNNA
AVAW JISvd / K

OFT INIONT
NOILNO3IX3
JNILNNY

b H3ZATVYNY JNILNNY

01T 3TNAOW INILNNY AVAW

G0l YOSS3AD0¥d
dv10

U.S. Patent Jun. 30, 2015 Sheet 2 of 5 US 9,069,373 B2

START

/205

ANALYZE MDAV
METADATA

YES

¢ /-215

ANALYZE UNION
OR JOIN MDAV
METADATA

VIRTUAL OR
PLANNING?

220

UNION
OR JOIN
EXECUTABLE

?
EXECUTABLE AS AS CS*

CS? YES

/-225

RECURSIVE
> ANALYSIS

230

SUBSETS
EXECUTABLE
AS CS?

YES

250\ Y /-235
EXECUTE IN EXECUTE IN
APPLICATION CALCULATION
SERVER ENGINE

FIG. 2

END

U.S. Patent Jun. 30, 2015 Sheet 3 of 5 US 9,069,373 B2

300

START
/-305

ANALYZE MULTIDIMENSIONAL ANALYTICAL
METADATA TO DETERMINE A TYPE OF AN
ASSOCIATED CALCULATION PATTERN

¢ /310

DETERMINE SUBSETS OF THE
MULTIDIMENSIONAL ANALYTICAL METADATA
AND CORRESPONDING RUNTIME DECISION

RULES

¢ /-315

IDENTIFY EXECUTABLE CONDITIONS TO
EXECUTE THE SUBSETS OF THE
MULTIDIMENSIONAL ANALYTICAL METADATA

¢ /320

EXECUTE THE CALCULATION PATTERN
ASSOCIATED WITH THE MULTIDIMENSIONAL
ANALYTICAL METADATA

¢ /-325

GENERATE A RUNTIME FRAMEWORK

FIG. 3

U.S. Patent Jun. 30, 2015 Sheet 4 of 5 US 9,069,373 B2

400

-

RUNTIME METADATA
ANALYZER 420 BUFFER 425
PROCESSOR
405
RUNTIME
EXECUTION
ENGINE 430
MEMORY 41

DATABASE
415

FIG. 4

US 9,069,373 B2

Sheet 5 of 5

Jun. 30, 2015

U.S. Patent

CEE

09S
304N0S
v1va

¢ 9Old
— — - 0TS JOVHOLS
y3IavIY YIGIN 3DIAIA LNdN| 30IA3IA LNdLNO -
SF% Sng
028 (39 — —
SIS 505
IOVAYILNI HOLYIINNANOD
308NOS Y1V SMHOMLIN WV "0S33004d

4

S

e

00S

05S MyOMLIN -~

US 9,069,373 B2

1
GENERATING A RUNTIME FRAMEWORK

RELATED APPLICATIONS

This application is related to three co-pending U.S. Appli-
cations—

1. U.S. application Ser. No. 13/335,935 having titled ‘GEN-
ERATING A COMPILER INFRASTRUCTURE”, filed on
Dec. 23, 2011;

2. US. application Ser. No. 13/335,937 having titled
‘EXECUTING RUNTIME CALLBACK FUNCTIONS’,
filed on Dec. 23, 2011; and

3. US. application Ser. No. 13/335,938 having titled
‘DYNAMIC RECREATION OF MULTIDIMENSIONAL
ANALYTICAL DATA’, filed on Dec. 23, 2011,

all of which are herein incorporated by reference in its

entirety for all purposes.

FIELD

The field generally relates to computer systems and soft-
ware, and more particularly to various methods and systems
to generate a runtime framework.

BACKGROUND

In computing, Online Analytical Processing (OLAP) tools
enable users to interactively analyze multidimensional data
from various perspectives. Applications of OLAP include
business reporting for sales, marketing, management report-
ing, business process management, budgeting and forecast-
ing, financial reporting and the like. OLAP processors use
data stored in in-memory databases for analytical processing.
An in-memory database is a database management system
that primarily relies on volatile memory for computer data
storage. A plurality of data sources may be associated with
such an in-memory database, and each of the data sources
may have unique properties. To execute various data related
operations corresponding to the various data sources, an
execution platform may be required.

SUMMARY

Various embodiments of systems and methods to generate
a runtime framework are disclosed. In an embodiment, the
runtime framework is responsible for executing multidimen-
sional analytical metadata in a runtime environment that is
determined by the runtime framework. To generate such a
runtime framework, the received multidimensional analytical
metadata is analyzed to determine a type of an associated
calculation pattern. Based upon the type of calculation pattern
associated with the multidimensional analytical metadata,
subsets of the multidimensional analytical metadata and cor-
responding runtime decision rules are determined. To execute
the subsets, executable conditions corresponding to the mul-
tidimensional analytical metadata are identified. In an
embodiment, the identifying the executable conditions
include determining calculation scenario executable subsets
and calculation scenario inexecutable subsets. Based upon
the executable conditions, the calculation pattern associated
with the multidimensional analytical metadata is executed by
executing the associated subsets, and the runtime framework
is generated. Based upon the determination of the calculation
scenario executable subsets and the calculation scenario inex-
ecutable subsets, the runtime framework executes the subsets
in their respective engines, for instance in an in-memory

10

15

20

25

30

35

40

45

50

55

60

65

2

computing engine for calculation scenario executable sub-
sets; and in an application scenario for calculation scenario
inexecutable subsets.

In an embodiment, a system includes a processor to read
and execute instructions stored in a memory element that is in
communication with the processor. The memory includes
instructions to execute the generation of the runtime frame-
work. The processor may be in communication with various
compilation modules including a database, a runtime ana-
lyzer, a runtime execution engine, a metadata buffer and the
like to generate the runtime framework.

These and other benefits and features of embodiments will
be apparent upon consideration of the following detailed
description of preferred embodiments thereof, presented in
connection with the following drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

The claims set forth the embodiments of the invention with
particularity. The invention is illustrated by way of example
and not by way of limitation in the figures of the accompa-
nying drawings in which like references indicate similar ele-
ments. The embodiments of the invention, together with its
advantages, may be best understood from the following
detailed description taken in conjunction with the accompa-
nying drawings.

FIG. 1 is a block diagram illustrating an overall architec-
ture of a system to generate a runtime framework, according
to an embodiment.

FIG. 2 is a functional flow diagram illustrating a method to
generate a runtime framework, according to an embodiment.

FIG. 3 is a process flow diagram illustrating a method to
generate a runtime framework, according to an embodiment.

FIG. 4 is a block diagram illustrating a system to generate
a runtime framework, according to an embodiment.

FIG. 51s ablock diagram illustrating a system, according to
an embodiment.

DETAILED DESCRIPTION

Embodiments of techniques for systems and methods to
generate a runtime framework are disclosed. In the following
description, numerous specific details are set forth to provide
a thorough understanding of embodiments of the invention.
One skilled in the relevant art will recognize, however, that
the invention can be practiced without one or more of the
specific details, or with other methods, components, materi-
als, etc. In other instances, well-known structures, materials,
or operations are not shown or described in detail to avoid
obscuring aspects of the invention.

Reference throughout this specification to “one embodi-
ment”, “this embodiment” and similar phrases, means that a
particular feature, structure, or characteristic described in
connection with the embodiment is included in at least one
embodiment of the present invention. Thus, the appearances
of these phrases in various places throughout this specifica-
tion are not necessarily all referring to the same embodiment.
Furthermore, the particular features, structures, or character-
istics may be combined in any suitable manner in one or more
embodiments.

Business data warehouse of an enterprise is a repository of
an enterprise’s data where the data is standardized, struc-
tured, integrated, and managed. Metadata associated with the
data warehouse defines contents of the data warehouse and
the functioning of the data present in the data warchouse.
Metadata of various traditional business data warehouse are
replaced by multidimensional analytical views (MDAVs),

US 9,069,373 B2

3

which represent a business object based metadata model for
analytics. The analytics include computer technology, opera-
tional research, and statistics to solve different problems in
business and industry scenarios such as enterprise decision
management, marketing analytics, portfolio analysis, credit
risk analysis, and the like. Metadata associated with the
MDAV (referred to as “MDAV metadata”) may be stored in
an in-memory computing engine.

The in-memory computing engine is a part of applications
that are built using in-memory technology. In-memory tech-
nology is a database management technology that stores com-
puter related data on main memory. Since the information is
stored on main memory, processing of all data transactions
are executed on main memory without having to access the
external storage media, thereby reducing I/O reading activity
when querying a database. The in-memory computing com-
bines transactions and analytics to provide efficient storage,
search and ad-hoc analysis of real-time information.
In-memory analytics may be described as an approach to
query data residing on the main memory, resulting in quick
response time. In-memory computing applications are built
based on business driven use cases, specifically in industries
requiring processing of large data volumes or real-time pro-
cessing such as banking, retail, utilities/energy, and telecom-
munications. Examples where in-memory technology may be
applied to build business applications include: demand fore-
casting based on huge data volumes provided by smart meter
devices in utilities industries; managing energy cost in energy
intensive industries with in-memory analytics and forecast-
ing based on fine grained consumption data; trade promotion
management solutions for retailers and consumer products
companies with high data volumes; real-time risk manage-
ment and cumulated risks calculation for insurance compa-
nies in the corresponding area; internal and external risk
management and regulatory reporting for banking sector; and
the like.

In an embodiment, the in-memory computing engine is
configured to execute the data stored in an in-memory data-
base of a computing device. The execution of the data may
render an outcome of a business application associated with
the in-memory computing engine. The in-memory comput-
ing engine is associated with a runtime module accessed
during a runtime execution of the data; and a compile time
module accessed while compiling the computing engine. The
in-memory computing engine includes a calculation engine
to generate calculation patterns or calculation rules defined
for the in-memory computing engine (e.g. data operations
such as union, join, filtering temporal data, and so on); and to
execute calculation scenarios representing a group of opera-
tions (e.g., mathematical operations). When the calculation
patterns are executed by a calculation engine in the
in-memory computing engine, a set of calculation scenarios
are created. The result from the execution of the calculation
scenarios is sent to an MDAV runtime module, which further
forwards it to an OL AP processor. The calculation engine can
work with multiple inputs from multiple table-types such as
OLAP-views, JOIN-tables, physical-tables, and the like. The
calculation engine can also combine and transform these
table types in multiple ways, for example by using predefined
operations like join, projection, aggregation, etc. Further, the
calculation engine allows customizable operations by includ-
ing Python-scripts, R-scripts, or L-scripts and thus allowing
basically any kind of data transformation.

A runtime module is responsible to execute the MDAV
metadata in runtime and further forward it to the OLAP
processor for analytical processing. The runtime module
receives data from various data sources, including resultant

10

15

20

25

30

40

45

55

60

65

4

data from join operation, union operation, intersection opera-
tion, planning operation or the like. Execution of some of the
received MDAV data may be associated with corresponding
specific runtime environment or runtime execution units.
Determination of the runtime environment for each MDAV
metadata is required for executing the MDAV metadata. A
runtime framework provides a platform to determine the runt-
ime environment for any type of MDAV metadata received
for execution. To generate the runtime framework, the MDAV
metadata received is analyzed to determine the type of data
operations (e.g. calculation patterns). Further, the runtime
framework determines an execution engine to execute the
MDAV metadata. In an embodiment, based upon calculation
scenario executable components associated with the MDAV,
the runtime framework may assign the execution of such
MDAV metadata into an in-memory computing engine. In
another embodiment, based upon calculation scenario inex-
ecutable components associated with the MDAV, the runtime
framework may assign the execution of such MDAV meta-
data into an application server. Based upon the execution
engine, the MDAV metadata is executed in runtime.

FIG. 1 is a block diagram illustrating an overall architec-
ture of a system to generate a runtime framework, according
to an embodiment. System 100 includes OLAP processor
105, MDAV runtime module 110, runtime analyzer 115, com-
bined MDAV runtime unit 120, compound MDAV runtime
unit 125, basic MDAV runtime unit 130, MDAV metadata
runtime buffer 135, runtime execution engine 140 and in-
memory database 145. OLAP processor 105 is responsible
for performing analytical processing of multidimensional
data according to a business requirement. In an embodiment,
in-memory database 145 includes many data sources that are
involved in performing corresponding data operations. To
execute the data available at runtime and provide OLAP pro-
cessor 105 with a resultant of the execution, MDAV runtime
module 110 is configured to generate the runtime framework
during system runtime. In an embodiment, MDAV runtime
module 110 is configured to develop a generic framework to
determine a runtime executable environment for any received
MDAV metadata, and execute the MDAV metadata in the
corresponding runtime environment.

Accordingly, in an embodiment, in-memory database 145
renders multidimensional metadata (MDAV metadata) to
MDAV runtime module 110. In-memory database 145 may
render the MDAV metadata based upon a compilation execu-
tion of calculation scenarios associated with MDAV meta-
data. Runtime analyzer 115 analyzes this MDAV metadata to
determine a type of an associated calculation pattern. Ana-
lyzing the MDAV metadata includes examining the MDAV
metadata to determine a calculation pattern associated with it,
and to determine a type of the calculation pattern. For
example, a type of calculation pattern may be a UNION type.
In an embodiment, runtime analyzer 115 queries MDAV
metadata runtime buffer 135 to retrieve a type of calculation
pattern corresponding to the MDAV metadata. Runtime ana-
lyzer 115 determines a corresponding MDAV runtime unit
(for. eg. 120, 125, 130) based upon the type of the calculation
pattern. For instance, if the calculation pattern is of a BASIC
type, basic MDAV runtime unit 130 is invoked; if the calcu-
lation pattern is of a JOIN type, combined MDAV runtime
unit 120 is invoked; if the calculation pattern is of a PLAN-
NING type, compound MDAV runtime unit 125 is invoked.
Runtime analyzer 115 instructs the corresponding MDAV
runtime unit to establish a connection with MDAV metadata
runtime buffer 135.

Based upon the type of calculation pattern, runtime ana-
lyzer 115 determines one or more subsets or members of the

US 9,069,373 B2

5

MDAV metadata from MDAV metadata runtime buffer 135
via a corresponding MDAV runtime unit. Subsets of the
MDAV metadata may represent one or more data operations
associated with the calculation pattern. For instance, join
operation, union operation, intersection operation, planning
operation, and the like. Each subset may have second level
subsets or members of the subset of the MDAV metadata. In
an embodiment, runtime analyzer 115 determines runtime
decision rules along with the subsets of MDAV metadata.
Further, runtime analyzer 115 identifies executable condi-
tions associated with the MDAV metadata to execute the
subsets of the MDAV metadata. An executable condition may
be determined based upon the type of an associated execution
pattern. An executable condition may also be determined
based upon determining calculation scenario executable
MDAV metadata and/or subsets of calculation scenario
executable MDAV metadata. A calculation scenario execut-
able MDAV metadata includes a MDAV metadata for which
a calculation scenario may be generated and executed in the
in-memory computing engine.

Identifying the executable condition may include deter-
mining the calculation executable scenario subsets of the
MDAV metadata and determining the calculation scenario
inexecutable subsets of the MDAV metadata. These execut-
able conditions are identified to execute the subsets of the
MDAV metadata. Based upon the executable condition,
MDAV runtime module 110 generates the runtime framework
by instructing runtime execution engine 140 to execute the
calculation pattern associated with the MDAV metadata in a
corresponding engine residing associated with in-memory
database 145. For instance, the calculation executable sce-
nario subsets of the MDAV metadata are executed in an in-
memory computing engine and the calculation scenario inex-
ecutable subsets of the MDAV metadata are executed in an
application server.

In an embodiment, the MDAV metadata may be internally
represented as a tree structure illustrating a hierarchical
arrangement of one or more types of calculation patterns, one
or more subsets of the MDAV metadata, and the like. Subsets
of'the MDAV metadata represent join operation, union opera-
tion, intersection operation, planning operation, and the like.
Some of these subsets are basic subsets, some are combined
subsets and some are compound subsets depending upon the
type of corresponding calculation pattern. Subsets that are
combined or compound may have second level subsets or
members of the subset of the MDAV metadata.

For instance, a primary MDAV metadata is received from
in-memory database 145, where the primary MDAV meta-
data represents a first level in the hierarchical arrangement.
Runtime analyzer 115 determines a type of calculation pat-
tern associated with the primary MDAV metadata. The type
of calculation pattern represents a subordinate level in the
hierarchical arrangement. Further, runtime analyzer 115 ana-
lyzes a secondary MDAV metadata associated with the type
of'the calculation pattern, where the secondary MDAV meta-
data represents a second level in the hierarchical arrange-
ment. Runtime analyzer 115 determines one or more subsets
of the secondary MDAV metadata. These subsets represent a
subordinate level in the hierarchical arrangement. Runtime
analyzer 115 analyzes a tertiary MDAV metadata associated
with the subsets of the secondary MDAV metadata. Based
upon the above determination, runtime analyzer 115 identi-
fies executable conditions for the subsets associated with the
tertiary MDAV metadata, for the secondary MDAV metadata
and for the primary MDAV metadata. In an embodiment,
runtime analyzer 115 may identify inexecutable conditions
for the subsets associated with the tertiary MDAV metadata,

10

15

20

25

30

35

40

45

50

55

60

65

6

for the secondary MDAV metadata and for the primary
MDAV metadata. In another embodiment, runtime analyzer
115 determines calculation scenario executable tertiary
MDAV metadata, calculation scenario executable secondary
MDAV metadata and calculation scenario executable primary
MDAV metadata. Runtime execution engine 140 executes the
tertiary MDAV metadata, the secondary MDAV metadata and
the primary MDAV metadata in their respective engine (for
e.g. in-memory computing engine or application server).

In an embodiment, an inexecutable condition is overruled
(or overridden) by providing one or more configurable
parameters and configuring the MDAV metadata. Examples
of configurable parameters include: force an in-memory
execution, force an application server execution, delay an
in-memory execution, delay an application server execution,
or the like. In another embodiment, during the process of
executing the MDAV metadata, runtime execution engine 140
communicates with a fallback detector to detect a runtime
fallback. A fallback may occur at various instances of runtime
execution of the MDAV metadata. For instance, a fallback
may occur if the calculation scenario executable MDAV
metadata is not being executed in the in-memory computing
engine, if the calculation scenario inexecutable MDAV meta-
data is not being executed in the application server, if an error
has occurred during data access from the data source, if the
in-memory computing engine is disconnected, if the
in-memory computing engine is terminated, if the in-memory
computing engine is returned with an error, or the like. In such
cases, a configurable parameter is provided to override the
errors and amend the runtime fallback. The configurable
parameter may represent an error detection and correction
property to successfully execute the MDAV metadata in the
respective engine.

FIG. 2 is a functional flow diagram illustrating a method to
generate a runtime framework, according to an embodiment.
In an embodiment, the runtime framework is responsible for
executing multidimensional analytical metadata in a runtime
environment that is determined by the runtime framework. To
generate such a runtime framework, the received multidimen-
sional analytical metadata is analyzed to determine a type of
an associated calculation pattern. Based upon the type, sub-
sets of the multidimensional analytical metadata and corre-
sponding runtime decision rules are determined. To execute
the subsets, executable conditions corresponding to the mul-
tidimensional analytical metadata are identified. Based upon
the executable conditions, the calculation pattern associated
with the multidimensional analytical metadata is executed by
executing the associated subsets, and the runtime framework
is generated. The runtime framework determines calculation
scenario executable subsets and calculation scenario inex-
ecutable subsets that are associated with the MDAV meta-
data; and executes the MDAV metadata in their respective
engines.

The runtime module is responsible to execute the MDAV
metadata in runtime and further forward it to the OLAP
processor for analytical processing. The runtime module
receives MDAV metadata from various data sources, includ-
ing resultant data from join operation, union operation, inter-
section operation, planning operation or the like, representing
one or more calculation patterns.

Infunctional block 205, the MDAV metadata is analyzed to
determine a type of the associated calculation pattern. In
decision block 210, a determination of whether the type of the
calculation pattern associated with MDAV metadata is of a
JOIN type or a UNION type is established. If the associated
calculation pattern is of the JOIN or UNION type, the process

US 9,069,373 B2

7

proceeds to functional block 215. If the associated calculation
pattern is not of the JOIN or UNION type, the process pro-
ceeds to decision block 240.

In functional block 215, the MDAV metadata associated
with JOIN or UNION type is analyzed to determine execut-
able conditions. In decision block 220, a determination of
whether the MDAV metadata associated with the JOIN or
UNION type is executable as a calculation scenario is estab-
lished. In an embodiment, the determination of whether the
MDAV metadata is executable as a calculation scenario is
established based upon the executable conditions. If the
MDAV metadata is executable as a calculation scenario, the
process proceeds to functional block 225. If the MDAV meta-
data is not executable as a calculation scenario, the process
proceeds to functional block 250.

In functional block 225, the MDAV metadata associated
with JOIN or UNION type is recursively analyzed to deter-
mine subsets of the MDAV metadata. In an embodiment, a
recursive analysis includes an iterative analysis of the MDAV
metadata until all the subsets of the MDAV metadata are
analyzed. In an embodiment, the MDAV metadata may be
internally represented as a tree structure illustrating a hierar-
chical arrangement of one or more types of calculation pat-
terns, one or more subsets of the MDAV metadata, and the
like. The tree structure of the MDAV metadata may include
one or more branches representing a combination of one or
more calculation patterns, and one or more leaves associated
with each branch representing a fundamental calculation pat-
tern. While analyzing the MDAV metadata, the analysis
reaches the root level of the tree structure by parsing each
branch, and each leaf of the branch. Each leaf and/or each
branch of the MDAV metadata tree may be associated with a
different type of calculation pattern. By performing a recur-
sive analysis, each calculation pattern is identified and a cor-
responding procedure of execution is applied. Thus, in func-
tional block 225, a recursive analysis is performed to
determine one or more subsets of the MDAV metadata. The
subsets of the MDAV metadata may represent the branches
and/or the leaves of the MDAV metadata. One or more execu-
tion procedures associated with the subset may be described
as runtime decision rules.

In decision block 230, a determination whether the subsets
of the MDAV metadata are executable as a calculation sce-
nario is established. If the subsets of the MDAV metadata are
executable as a calculation scenario, the process proceeds to
functional block 235. If the subsets of the MDAV metadata
are not executable as a calculation scenario, the process pro-
ceeds to functional block 250.

In decision block 240, a determination of whether the type
of'the calculation pattern associated with MDAV metadata is
of a VIRTUAL or PLANNING type is established. If the
associated calculation pattern is of the VIRTUAL or PLAN-
NING type, the process proceeds to functional block 250. If
the associated calculation pattern is not of the VIRTUAL or
PLANNING type, the process proceeds to decision block
245.

In an embodiment, if the calculation pattern associated
with the MDAV metadata is not of the type UNION, JOIN,
VIRTUAL or PLANNING, the calculation pattern is consid-
ered as a basic MDAV type. A basic calculation pattern type
for the MDAV metadata may represent one or more types of
fundamental calculation patterns having a singular or mul-
tiple data sources accessible for data retrieval. A non-basic
calculation pattern type (fore.g. UNION, JOIN, VIRTUAL or
PLANNING) may represent a combination of one or more
basic calculation pattern types and/or one or more non-basic
calculation pattern types. A non-basic pattern type may also

15

20

30

40

45

55

8

be referred to as a COMBINATION type of calculation pat-
tern associated with the MDAV metadata.

In decision block 245, a determination of whether the
BASIC type of the calculation pattern associated with MDAV
metadata is executable as a calculation scenario is estab-
lished. If the BASIC type of the calculation pattern is execut-
able as a calculation scenario, the process proceeds to 235.
The flow of the process from decision block 245 to functional
block 235 is routed via a connector “A”. If the BASIC type of
the calculation pattern is not executable as a calculation sce-
nario, the process proceeds to functional block 250. In func-
tional block 250, the MDAV metadata is executable in an
application server. In functional block 235, the MDAV meta-
data is executable in an in-memory calculation engine.

In an embodiment, executing the calculation pattern asso-
ciated with the MDAV metadata further includes analyzing
the MDAV metadata to determine a “COMBINATION” type
of'associated calculation pattern. A COMBINATION type of
calculation pattern represents any combination of one or
more calculation pattern types. For instance, a JOIN type,
which adds metadata present in two or more tables in a data
source (horizontally); or a UNION type, which combines a
resultant data present in two tables into a single table (verti-
cally); or the like. The calculation scenario executable MDAV
metadata associated with the “COMBINATION” type is
determined, and based upon this determination, subsets of the
MDAV metadata and corresponding runtime decision rules
associated with the “COMBINATION” type are determined.
Further, calculation scenario executable subsets ofthe MDAV
metadata associated with the “COMBINATION” type are
determined, and based upon the determined calculation sce-
nario executable subsets, the “COMBINATION” type of the
calculation pattern is executed in an in-memory calculation
engine.

In an embodiment, if calculation scenario inexecutable
MDAV metadata associated with the “COMBINATION”
type is determined, based upon the inexecutable MDAV
metadata, the “COMBINATION” type of the calculation pat-
tern is executed in an application server. Similarly, if calcu-
lation scenario inexecutable subsets of the MDAV metadata
associated with the “COMBINATION” type are determined,
based upon the inexecutable subsets of the MDAV metadata,
the “COMBINATION” type of the calculation pattern is
executed in an application server.

FIG. 3 is a process flow diagram illustrating a method to
generate a runtime framework, according to an embodiment.
The runtime framework may be responsible for executing
multidimensional analytical metadata in a runtime environ-
ment that is determined by the runtime framework. A runtime
module receives MDAV metadata from various data sources.
In process block 305, received MDAV metadata is analyzed to
determine a type of an associated calculation pattern. In pro-
cess block 310, based upon the type of calculation pattern
associated with the MDAV metadata, subsets of the MDAV
metadata and corresponding runtime decision rules are deter-
mined. In process block 315, executable conditions corre-
sponding to the MDAV metadata are identified to execute the
subsets associated with the MDAV metadata. In an embodi-
ment, the subsets of the MDAV metadata are executed accord-
ing to the associated decision rules. In an embodiment, iden-
tifying the executable conditions include determining
calculation scenario executable subsets and calculation sce-
nario inexecutable subsets.

In process block 320, based upon the executable condi-
tions, the calculation pattern associated with the MDAV
metadata is executed by executing the associated subsets. In
process block 325, the runtime framework is generated,

US 9,069,373 B2

9

which executes the MDAV metadata in a corresponding runt-
ime environment. For instance, in an in-memory computing
engine for calculation scenario executable subsets; and in an
application scenario for calculation scenario inexecutable
subsets.

FIG. 4 is a block diagram illustrating a system to generate
a runtime framework, according to an embodiment. System
400 includes processor 405, memory 410, database 415, runt-
ime analyzer 420, runtime execution engine 430 and meta-
data buffer 425. In an embodiment, processor 405 is in com-
munication with memory 410 and database 415. Processor
405 reads and executes instructions that are stored in memory
elements 410. Memory elements 410 store the instructions to
analyze a plurality of representations of business data. Pro-
cessor 405 is also in communication with runtime analyzer
420 and runtime execution engine 430. Further, runtime ana-
lyzer 420 is in communication with metadata buffer 425 and
runtime execution engine 430.

In an embodiment, processor 405 is triggered by a user or
by the computer system to initiate an execution of MDAV
metadata in runtime. Processor 405 receives the MDAV meta-
data and sends it to runtime analyzer 420. Runtime analyzer
420 analyzes the MDAV metadata and determines a type of a
calculation pattern associated with the MDAV metadata.
Runtime analyzer 420 determines subsets of the MDAV
metadata and corresponding runtime decision rules from
metadata buffer 425. Further, runtime analyzer 420 identifies
executable conditions from metadata buffer 425 to execute
the subsets of the MDAV metadata. In an embodiment, the
subsets of the MDAV metadata are executed according to the
associated decision rules. In an embodiment, identifying the
executable conditions include determining calculation sce-
nario executable subsets and calculation scenario inexecut-
able subsets.

Runtime execution engine 430 executes the calculation
pattern associated with the MDAV metadata by executing
subsets associated with the MDAV metadata, and generates
the runtime framework. The runtime framework executes the
MDAV metadata in a corresponding runtime environment,
for instance, in an in-memory computing engine for calcula-
tion scenario executable subsets; and in an application sce-
nario for calculation scenario inexecutable subsets. In an
embodiment, runtime execution engine 430 is configured to
identify the calculation scenario executable subsets and cal-
culation scenario inexecutable subsets of the MDAV meta-
data, determined by runtime analyzer 420. Runtime execu-
tion engine 430 executes the corresponding scenario
executable MDAV metadata in an in-memory calculation
engine and calculation scenario inexecutable MDAV meta-
data in an application server. In an embodiment, system 400
includes a fallback detector (not shown in FIG. 4) that is
configured to detect a runtime fallback and provide a config-
urable parameter to override one or more inexecutable con-
ditions and amend the runtime fallback.

In an embodiment, metadata buffer 425 stores instructions
to identify the type of calculation patterns, calculation sce-
nario executable and inexecutable MDAV metadata, calcula-
tion scenario executable and inexecutable subsets of the
MDAV metadata, and the like. Runtime execution engine 430
and runtime analyzer 420 communicate with metadata buffer
425 to access the instructions and make necessary determi-
nations.

Some embodiments of the invention may include the
above-described methods being written as one or more soft-
ware components. These components, and the functionality
associated with each, may be used by client, server, distrib-
uted, or peer computer systems. These components may be

10

20

25

30

40

45

50

55

60

65

10

written in a computer language corresponding to one or more
programming languages such as, functional, declarative, pro-
cedural, object-oriented, lower level languages and the like.
They may be linked to other components via various appli-
cation programming interfaces and then compiled into one
complete application for a server or a client. Alternatively, the
components maybe implemented in server and client appli-
cations. Further, these components may be linked together via
various distributed programming protocols. Some example
embodiments of the invention may include remote procedure
calls being used to implement one or more of these compo-
nents across a distributed programming environment. For
example, a logic level may reside on a first computer system
that is remotely located from a second computer system con-
taining an interface level (e.g., a graphical user interface).
These first and second computer systems can be configured in
a server-client, peer-to-peer, or some other configuration. The
clients can vary in complexity from mobile and handheld
devices, to thin clients and on to thick clients or even other
servers.

The above-illustrated software components are tangibly
stored on a computer readable storage medium as instruc-
tions. The term “computer readable storage medium” should
be taken to include a single medium or multiple media that
stores one or more sets of instructions. The term “computer
readable storage medium” should be taken to include any
physical article that is capable of undergoing a set of physical
changes to physically store, encode, or otherwise carry a set
of instructions for execution by a computer system which
causes the computer system to perform any of the methods or
process steps described, represented, or illustrated herein.
Examples of computer readable storage media include, but
are not limited to: magnetic media, such as hard disks, floppy
disks, and magnetic tape; optical media such as CD-ROMs,
DVDs and holographic devices; magneto-optical media; and
hardware devices that are specially configured to store and
execute, such as application-specific integrated circuits
(“ASICs”), programmable logic devices (“PLDs”) and ROM
and RAM devices. Examples of computer readable instruc-
tions include machine code, such as produced by a compiler,
and files containing higher-level code that are executed by a
computer using an interpreter. For example, an embodiment
of the invention may be implemented using Java, C++, or
other object-oriented programming language and develop-
ment tools. Another embodiment of the invention may be
implemented in hard-wired circuitry in place of, or in com-
bination with machine readable software instructions.

FIG. 51is ablock diagram of an exemplary computer system
500. The computer system 500 includes a processor 505 that
executes software instructions or code stored on a computer
readable storage medium 555 to perform the above-illus-
trated methods of the invention. The computer system 500
includes a media reader 540 to read the instructions from the
computer readable storage medium 555 and store the instruc-
tions in storage 510 or in random access memory (RAM) 515.
The storage 510 provides a large space for keeping static data
where at least some instructions could be stored for later
execution. The stored instructions may be further compiled to
generate other representations of the instructions and
dynamically stored in the RAM 515. The processor 505 reads
instructions from the RAM 515 and performs actions as
instructed. According to one embodiment of the invention,
the computer system 500 further includes an output device
525 (e.g., a display) to provide at least some of the results of
the execution as output including, but not limited to, visual
information to users and an input device 530 to provide a user
or another device with means for entering data and/or other-

US 9,069,373 B2

11

wise interact with the computer system 500. Each of these
output devices 525 and input devices 530 could be joined by
one or more additional peripherals to further expand the capa-
bilities of the computer system 500. A network communicator
535 may be provided to connect the computer system 500 to
a network 550 and in turn to other devices connected to the
network 550 including other clients, continuation servers,
data stores, and interfaces, for instance. The modules of the
computer system 500 are interconnected via a bus 545. Com-
puter system 500 includes a data source interface 520 to
access data source 560. The data source 560 can be accessed
via one or more abstraction layers implemented in hardware
or software. For example, the data source 560 may be
accessed by network 550. In some embodiments the data
source 560 may be accessed via an abstraction layer, such as,
a semantic layer.

A data source is an information resource. Data sources
include sources of data that enable data storage and retrieval.
Data sources may include databases, such as, relational,
transaction, hierarchical, multi-dimensional (e.g., OLAP),
object oriented databases, and the like. Further data sources
include tabular data (e.g., spreadsheets, delimited text files),
data tagged with a markup language (e.g., XML data), trans-
action data, unstructured data (e.g., text files, screen scrap-
ings), hierarchical data (e.g., data in a file system, XML data),
files, a plurality of reports, and any other data source acces-
sible through an established protocol, such as, Open Data-
Base Connectivity (ODBC), produced by an underlying soft-
ware system (e.g., ERP system), and the like. Data sources
may also include a data source where the data is not tangibly
stored or otherwise ephemeral such as data streams, broadcast
data, and the like. These data sources can include associated
data foundations, semantic layers, management systems,
security systems and so on.

In the above description, numerous specific details are set
forth to provide a thorough understanding of embodiments of
the invention. One skilled in the relevant art will recognize,
however that the invention can be practiced without one or
more of the specific details or with other methods, compo-
nents, techniques, etc. In other instances, well-known opera-
tions or structures are not shown or described in details to
avoid obscuring aspects of the invention.

Although the processes illustrated and described herein
include series of steps, it will be appreciated that the different
embodiments of the present invention are not limited by the
illustrated ordering of steps, as some steps may occur in
different orders, some concurrently with other steps apart
from that shown and described herein. In addition, not all
illustrated steps may be required to implement a methodology
in accordance with the present invention. Moreover, it will be
appreciated that the processes may be implemented in asso-
ciation with the apparatus and systems illustrated and
described herein as well as in association with other systems
not illustrated.

The above descriptions and illustrations of embodiments
of the invention, including what is described in the Abstract,
is not intended to be exhaustive or to limit the invention to the
precise forms disclosed. While specific embodiments of, and
examples for, the invention are described herein for illustra-
tive purposes, various equivalent modifications are possible
within the scope of the invention, as those skilled in the
relevant art will recognize. These modifications can be made
to the invention in light of the above detailed description.
Rather, the scope of the invention is to be determined by the
following claims, which are to be interpreted in accordance
with established doctrines of claim construction.

10

20

25

30

35

40

45

50

55

60

65

12

What is claimed is:

1. A computer implemented method to generate a runtime
framework, comprising:

analyzing a multidimensional analytical metadata to deter-

mine a type of an associated calculation pattern;

based upon the type of the calculation pattern, a processor

of the computer determining one or more subsets of the
multidimensional analytical metadata and correspond-
ing one or more runtime decision rules, wherein the one
or more subsets include one or more calculation scenario
executable subsets and one or more calculation scenario
inexecutable subsets;

identifying one or more executable conditions to execute

the one or more subsets of the multidimensional analyti-
cal metadata; and

based upon the executable conditions, generating the runt-

ime framework by executing the calculation pattern
associated with the multidimensional analytical meta-
data, wherein executing the calculation pattern com-
prises executing the one or more subsets of the multidi-
mensional analytical metadata, by executing the
calculation scenario executable metadata in an
in-memory calculation engine, and executing the calcu-
lation scenario inexecutable metadata in an application
server.

2. The computer implemented method of claim 1 further
comprising:

receiving a primary multidimensional analytical metadata

including the associated calculation pattern;
determining the type of the calculation pattern associated
with primary multidimensional analytical metadata;
analyzing a secondary multidimensional analytical meta-
data associated with the type of the calculation pattern;
determining one or more subsets of the secondary multi-
dimensional analytical metadata;
analyzing a tertiary multidimensional analytical metadata
associated with the subsets of the secondary multidi-
mensional analytical metadata;

identifying one or more executable conditions for the sub-

sets associated with the tertiary multidimensional ana-
Iytical metadata, the secondary multidimensional ana-
Iytical metadata and the primary multidimensional
analytical metadata; and

executing the tertiary multidimensional analytical meta-

data, the secondary multidimensional analytical meta-
data and the primary multidimensional analytical meta-
data based upon the corresponding executable
conditions.

3. The computer implemented method of claim 2 further
comprising:

determining one or more calculation scenario executable

tertiary multidimensional analytical metadata;
determining one or more calculation scenario executable

secondary multidimensional analytical metadata; and
determining one or more calculation scenario executable

primary multidimensional analytical metadata.

4. The computer implemented method of claim 1, wherein
generating the runtime framework comprises: developing a
generic runtime framework to determine one or more runtime
executable environments to execute the multidimensional
analytical metadata.

5. The computer implemented method of claim 1 further
comprising: configuring the multidimensional analytical
metadata by providing a configurable parameter to override
one or more inexecutable conditions.

US 9,069,373 B2

13

6. The computer implemented method of claim 1 wherein
executing the multidimensional analytical metadata further
comprises:

detecting a runtime fallback, and

providing a configurable parameter to override one or more

inexecutable conditions and amend the runtime fallback.

7. The computer implemented method of claim 1, wherein
executing the calculation pattern associated with the multidi-
mensional analytical metadata further comprises:

analyzing a multidimensional analytical metadata to deter-

mine a “COMBINATION” type of an associated calcu-
lation pattern;

determining one or more calculation scenario executable

multidimensional analytical metadata associated with
the “COMBINATION” type;
based upon the determined calculation scenario executable
multidimensional analytical metadata, a processor of the
computer determining one or more subsets of the mul-
tidimensional analytical metadata and corresponding
one or more runtime decision rules associated with the
“COMBINATION” type;

determining one or more calculation scenario executable
subsets of the multidimensional analytical metadata
associated with the “COMBINATION” type; and

based upon the determined calculation scenario executable
subsets, executing the “COMBINATION” type of the
calculation pattern in an in-memory calculation engine.

8. The computer implemented method of claim 1, wherein
executing the calculation pattern associated with the multidi-
mensional analytical metadata further comprises:

analyzing a multidimensional analytical metadata to deter-

mine a “COMBINATION” type of an associated calcu-
lation pattern;

determining one or more calculation scenario inexecutable

multidimensional analytical metadata associated with
the “COMBINATION” type; and

based upon the determined calculation scenario inexecut-

able multidimensional analytical metadata executing the
“COMBINATION?” type of the calculation pattern in an
application server.

9. The computer implemented method of claim 1, wherein
executing the calculation pattern associated with the multidi-
mensional analytical metadata further comprises:

analyzing a multidimensional analytical metadata to deter-

mine a “COMBINATION” type of an associated calcu-
lation pattern;

determining one or more calculation scenario executable

multidimensional analytical metadata associated with
the “COMBINATION” type;
based upon the determined calculation scenario executable
multidimensional analytical metadata, a processor of the
computer determining one or more subsets of the mul-
tidimensional analytical metadata and corresponding
one or more runtime decision rules associated with the
“COMBINATION” type;

determining one or more calculation scenario inexecutable
subsets of the multidimensional analytical metadata
associated with the “COMBINATION” type; and

based upon the determined calculation scenario inexecut-
able subsets, executing the “COMBINATION” type of
the calculation pattern in an application server.

10. The computer implemented method of claim 1,
wherein executing the calculation pattern associated with the
multidimensional analytical metadata further comprises:

analyzing a multidimensional analytical metadata to deter-

mine a “VIRTUAL” type of an associated calculation
pattern; and

10

20

25

30

35

40

45

50

55

60

65

14

executing the “VIRTUAL” type of the calculation pattern

in an application server.

11. The computer implemented method of claim 1,
wherein executing the calculation pattern associated with the
multidimensional analytical metadata further comprises:

analyzing a multidimensional analytical metadata to deter-

mine a “PLANNING” type of an associated calculation
pattern; and

executing the “PLANNING” type of the calculation pat-

tern in an application server.

12. The computer implemented method of claim 1,
wherein executing the calculation pattern associated with the
multidimensional analytical metadata further comprises:

analyzing a multidimensional analytical metadata to deter-

mine a “BASIC” type of an associated calculation pat-
tern;

determining one or more calculation scenario executable

multidimensional analytical metadata associated with
the “BASIC” type; and

based upon the determined calculation scenario executable

multidimensional analytical metadata executing the
“BASIC” type of the calculation pattern in an
in-memory computing engine.

13. The computer implemented method of claim 1,
wherein executing the calculation pattern associated with the
multidimensional analytical metadata further comprises:

analyzing a multidimensional analytical metadata to deter-

mine a “BASIC” type of an associated calculation pat-
tern;

determining one or more calculation scenario inexecutable

multidimensional analytical metadata associated with
the “BASIC” type; and

based upon the determined calculation scenario inexecut-

able multidimensional analytical metadata executing the
“BASIC” type of the calculation pattern in an applica-
tion server.
14. An article of manufacture including a non-transitory
computer readable storage medium to tangibly store instruc-
tions, which when executed by a computer, cause the com-
puter to:
analyze a multidimensional analytical metadata to deter-
mine a type of an associated calculation pattern;

determine one or more subsets of the multidimensional
analytical metadata and corresponding one or more runt-
ime decision rules based upon the type of the calculation
pattern, wherein the one or more subsets include one or
more calculation scenario executable subsets and one or
more calculation scenario inexecutable subsets;

identify one or more executable conditions to execute the
one or more subsets of the multidimensional analytical
metadata; and

based upon the executable conditions, generate the runtime

framework by executing the calculation pattern associ-
ated with the multidimensional analytical metadata,
wherein executing the calculation pattern comprises
executing the one or more subsets of the multidimen-
sional analytical metadata by executing the calculation
scenario executable metadata in an in-memory calcula-
tion engine, and executing the calculation scenario inex-
ecutable metadata in an application server.

15. The article of manufacture of claim 14 further compris-
ing:

to receive a primary multidimensional analytical metadata

including the associated calculation pattern;

to determine the type of the calculation pattern associated

with primary multidimensional analytical metadata;

US 9,069,373 B2

15

to analyze a secondary multidimensional analytical meta-
data associated with the type of the calculation pattern;
to determine one or more subsets of the secondary multi-
dimensional analytical metadata;
to analyze a tertiary multidimensional analytical metadata
associated with the subsets of the secondary multidi-
mensional analytical metadata;
to identify one or more executable conditions for the sub-
sets associated with the tertiary multidimensional ana-
lytical metadata, the secondary multidimensional ana-
Iytical metadata and the primary multidimensional
analytical metadata; and
to execute the tertiary multidimensional analytical meta-
data, the secondary multidimensional analytical meta-
data and the primary multidimensional analytical meta-
data based upon the -corresponding executable
conditions.
16. A computing system to generate a runtime framework,
comprising:
aprocessor to read and execute instructions stored in one or
more memory elements; and
the one or more memory elements storing instructions
including:
a runtime analyzer
to analyze a multidimensional analytical metadata
and determine a type of an associated calculation
pattern,

10

15

20

25

16

to determine one or more subsets of the multidimen-
sional analytical metadata and corresponding one
or more runtime decision rules from a metadata
buffer, wherein the one or more subsets include one
or more calculation scenario executable subsets
and one or more calculation scenario inexecutable
subsets, and
to identify one or more executable conditions from the
metadata buffer, to execute the one or more subsets
of the multidimensional analytical metadata; and
a runtime execution engine to generate the runtime
framework based upon the executable conditions by
executing the calculation pattern associated with the
multidimensional analytical metadata, wherein
executing the calculation pattern comprises executing
the one or more subsets of the multidimensional ana-
Iytical metadata by executing the calculation scenario
executable metadata in an in-memory calculation
engine, and executing the calculation scenario inex-
ecutable metadata in an application server.
17. The computing system of claim 16 further comprising:
a fallback detector to detect a runtime fallback and provide a
configurable parameter to override one or more inexecutable
conditions and amend the runtime fallback.

#* #* #* #* #*

